Su(H)-independent activity of Hairless during mechano-sensory organ formation in Drosophila

نویسندگان

  • Anja C. Nagel
  • Dieter Maier
  • Anette Preiss
چکیده

Formation of mechano-sensory organs in Drosophila involves the selection of neural precursor cells (SOPs) mediated by the classical Notch pathway in the process of lateral inhibition. Here we show that the subsequent cell type specifications rely on distinct subsets of Notch signaling components. Whereas E(spl) bHLH genes implement SOP selection, they are not required for later decisions. Most remarkably, the Notch signal transducer Su(H) is essential to determine outer but not inner cell fates. In contrast, the Notch antagonist Hairless, thought to act upon Su(H), influences strongly the entire cell lineage demonstrating that it functions through targets other than Su(H) within the inner lineage. Thereby, Hairless and numb may have partly redundant activities. This suggests that Notch-dependent binary cell fate specifications involve different sets of mediators depending on the cell type considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Notch-independent function of Suppressor of Hairless during the development of the bristle sensory organ precursor cell of Drosophila.

Su(H)/CBF1 is a key component of the evolutionary conserved Notch signalling pathway. It is a transcription factor that acts as a repressor in the absence of the Notch signal. If Notch signalling is activated, it associates with the released intracellular domain of the Notch receptor and acts as an activator of transcription. During the development of the mechanosensory bristles of Drosophila, ...

متن کامل

Insensitive is a corepressor for Suppressor of Hairless and regulates Notch signalling during neural development.

The Notch intracellular domain functions as a co-activator for the DNA-binding protein Suppressor of Hairless (Su(H)) to mediate myriad cell fate decisions. Notch pathway activity is balanced by transcriptional repression, mediated by Su(H) in concert with its Drosophila corepressor Hairless. We demonstrate that the Drosophila neural BEN-solo protein Insensitive (Insv) is a nuclear factor that ...

متن کامل

Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster.

The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report fun...

متن کامل

Gain of Function Notch Phenotypes Associated with Ectopic Expression of the Su(H) C-Terminal Domain Illustrate Separability of Notch and Hairless-Mediated Activities

The Notch signaling pathway is instrumental for cell fate decisions. Signals from the Notch receptor are transduced by CSL-type DNA-binding proteins. In Drosophila, this protein is named Suppressor of Hairless [Su(H)]. Together with the intracellular domain of the activated Notch receptor ICN, Su(H) assembles a transcriptional activator complex on Notch target genes. Hairless acts as the major ...

متن کامل

The Drosophila IgC2 domain protein Friend-of-Echinoid, a paralogue of Echinoid, limits the number of sensory organ precursors in the wing disc and interacts with the Notch signaling pathway.

The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosoph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2000